Joseph Blough
Partner: Jane Doe
1125-section 1
Desk \# 7
Sep. $7^{\text {th }}, 2010$

Density of a Cylinder

Purpose Find the density of a metal cylinder.

Apparatus metal cylinder \# 115, 2 pan balance \# 4, vernier calipers \# 15

Data
Table 1: Mass of the cylinder $\mathrm{m}(\mathrm{g})$

Uncertainty	± 0.1
Reading	38.6

Note: zero reading was zero.
Table 2: Dimensions of the cylinder (cm)

	Length L	Diameter d
Precision of calipers	± 0.01	± 0.01
Zero Reading	-0.01	-0.01
Reading 1	3.23	1.31
Reading 2	3.26	1.31
Reading 3	3.24	1.30
Average Reading	3.2433	1.3067
Corrected Reading	3.2533	1.3167
Uncertainty	0.015	0.01

Note: for the length L, the scatter is (3.26-3.23)/2=0.015 cm, bigger than the precision of the calipers, so we use 0.015 cm for the uncertainty.

While for the diameter d, the scatter is (1.31-1.30)/2=0.005 cm, smaller than the precision of the calipers, so we use 0.01 cm .

Properly label heading with the title, your name, partner's name, course/section \#, desk \#, and date

Describe the purpose of the lab in a form that can be answered in the conclusion

List all apparatus used along with the identifying numbers

Record data with units and uncertainties in tables with descriptive titles

Briefly explain how you get the value of the uncertainty

Calculations

$$
\begin{aligned}
& \mathrm{m}=38.6 \mathrm{~g}=38.6 \times 10^{-3} \mathrm{~kg}, \\
& \mathrm{~L}=3.2533 \mathrm{~cm}=3.2533 \times 10^{-2} \mathrm{~m}, \\
& \mathrm{~d}=1.3167 \mathrm{~cm}=1.3167 \times 10^{-2} \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
\rho & =\frac{4 \mathrm{~m}}{\pi d^{2} l} \longleftarrow \\
& =\frac{4\left(38.6 \times 10^{-3} \mathrm{~kg}\right)}{\pi\left(1.3167 \times 10^{-2} \mathrm{~m}\right)^{2}\left(3.2533 \times 10^{-2} \mathrm{~m}\right)} \\
& =8.7136 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Convert units first

Show equations in symbols before substituting in the numbers

Keep units

Calculate the relative uncertainty in the final result based on the propagation rules, symbols first

Formulate conclusions that answer to the purpose of the lab

Express final result(s) with the correct number of decimal places for the value and the uncertainty

Compare result with alternate or previous results while considering the uncertainty

Discuss major factors that contribute to the final uncertainty

Discuss physical factors that have been neglected in the calculations, but can affect the result

