1. Write the expression for either the relative uncertainty or the absolute uncertainty.
(For sum/difference, start with absolute uncertainty δq. For other types, find the relative uncertainty $\delta q / q$ first.)

$F=m a$	$\frac{\delta F}{F}=\frac{\delta m}{m}+\frac{\delta a}{a}$
$m=m_{1}-m_{2}$	
$V=\frac{1}{6} \pi D^{3}$	
$q=\sqrt{x y}$	
$T=2 \pi \sqrt{\frac{l}{g}}$	
$L_{\text {ave }}=\frac{1}{2}\left(L_{1}+L_{2}\right)$	

2. Work out the numbers

Find the numerical value for q and its absolute and relative uncertainties. For products, find the value of the relative uncertainty first, and then multiply by q to get the absolute uncertainty. Quote your answer properly.
$A=(3.3 \pm 0.5) \mathrm{m}^{2}, B=(2.2 \pm 0.1) \mathrm{m}, C=(5.5 \pm 0.2) \mathrm{m}$.

Example:

$q=\frac{3 A B}{C}$

Try yourself:

2a.

$$
q=\frac{3 A B^{2}}{C}
$$

Answer: $(8.7 \pm 2.4) \mathrm{m}^{3}(\pm 28 \%)$ or $(9 \pm 2) \mathrm{m}^{3}(\pm 28 \%)$

2 b .

$$
q=A+B C
$$

Answer: $(15.4 \pm 1.5) \mathrm{m}^{2}(\pm 9.7 \%)$

3. A more complete example

To determine the amount of wallpaper q needed for a square room, a decorator measures:

Wall height,
Wall width,
Area of windows and doors, $h=2.49 \pm 0.01 \mathrm{~m}$
$w=2.10 \pm 0.01 \mathrm{~m}$
$A=3.51 \pm 0.06 \mathrm{~m}^{2}$
Find $q=4 h w-A$ and its uncertainty. (Answer: $\left.q=(17.4 \pm 0.2) \mathrm{m}^{2}(\pm 1 \%)\right)$

Try yourself:

To determine the magnitude of the angular momentum L of a uniform disk, a student measures:

Mass,
Radius,
Angular velocity,
Find $L=\frac{1}{2} M R^{2} \omega$ and its uncertainty.
(Answer: $L=(0.13 \pm 0.01) \mathrm{kgm}^{2} / \mathrm{s}(\pm 9 \%) \quad$ or $\left.\quad L=(0.134 \pm 0.013) \mathrm{kgm}^{2} / \mathrm{s}(\pm 9.4 \%)\right)$

