Uncertainty

What it is, where we need it, how does uncertainty propagate

What is uncertainty?

A police says your car was travelling at a speed of 70 km/h. What does he really mean? Now he has to give you a better answer. He says you were speeding because the speed limit is 50 km/h and

the speed of your car was (70 ± 5) km/h

- 70 km/h is the value of the speed, also called the best estimate: v;
- 5 km/h is the **uncertainty** of the speed: δv ;
- The value and the uncertainty together define a range (65 to 75 km/h) where the "true" speed most likely falls within. i.e.: If someone were taking the same measurement, he/she would likely get a value within this range.
- How likely? It depends. For example, 68% likelihood if using "standard deviation" as the uncertainty for a normal distribution. We will try "70% or more" for our labs.
- None of above terms is exact: they are all uncertain.

Absolute uncertainty and relative uncertainty

- Uncertainty that describe the range of the data is also called "the absolute uncertainty". It has the same units as the value. Symbol is δA .
- Is it a big uncertainty or a small uncertainty? 1 meter is a big uncertainty for the size of our lab, but is a small uncertainty for the distance to the moon. The precision of the measurement is reflected by the relative uncertainty δA/A.

Speed of the car v is (70 ± 5) km/h

Relative uncertainty $\frac{\delta v}{v} = \frac{5 \text{ km/h}}{70 \text{ km/h}} = 0.0714 \approx 7\%$

- Absolute uncertainty has units, but relative uncertainty has no units.
- Absolute and relative uncertainty: knowing one = knowing them both.

Where is uncertainty in our lab report?

- 1. Purpose: no
- 2. Apparatus: no
- 3. Data: Yes. All data must have uncertainties (except counting a small integer). Decide uncertainty based on (1) measuring devices (2) the situation.
- 4. Calculations: no
- 5. Uncertainty Analysis: Yes. Here we show how the uncertainties of the raw data propagate into the uncertainty of the result.
- 6. Conclusion: Yes. You must report result with uncertainty.
- 7. Discussions: Yes. Compare the result to a reference number to see if they agree within uncertainty and discuss the sources of uncertainty.

Uncertainty Propagation

No more sig. fig. rules!

Unc. of data -> Unc. of result

You need

- The equation that calculates the result
- Propagation rules

Propagation Rule # 1: addition and subtraction

• If z = x + y or z = x - y, then $\delta z = \delta x + \delta y$

Example:

Propagation Rule # 1: addition

• If z = x + y, then $\delta z = \delta x + \delta y$

 $n_1 = 130 \pm 3, n_2 = 50 \pm 2, n_3 = 20 \pm 1$

Total number of the beads: $n = n_1 + n_2 + n_3 = 130 + 50 + 20 = 200$

 $\delta n = \delta n_1 + \delta n_2 + \delta n_3 = 3 + 2 + 1 = 6$

So the total number of beads is 200 ± 6 .

Propagation Rule # 1: subtraction

• If z = x - y, then $\delta z = \delta x + \delta y$

 $n = 200 \pm 2, n_{\text{out}} = 70 \pm 7$

Number of beads left in the bottle: $n_{\text{in}} = n - n_{\text{out}} = 200 - 70 = 130$ $\delta n_{\text{in}} = \delta n + \delta n_{\text{out}} = 2 + 7 = 9$

So the number of beads left in the bottle is 130 ± 9 .

Propagation Rule # 2: Multiplication and division

• If
$$z = xy$$
 or $z = x/y$, then $\frac{\delta z}{z} = \frac{\delta x}{x} + \frac{\delta y}{y}$

Example: Adam rides his bike to Langara. He covers (3.2±0.2) km in (10±1) minutes. What is his average speed?

$$v = \frac{d}{t} = \frac{3.2 \text{ km}}{10 \text{ min}} = 0.32 \text{ km/min}$$
$$\frac{\delta v}{v} = \frac{\delta d}{d} + \frac{\delta t}{t} = \frac{0.2}{3.2} + \frac{1}{10} = 0.1625$$
$$\delta v = \frac{\delta v}{v} \times v = 0.1625 \times 0.32 \text{ km/min} = 0.052 \text{ km/min} \approx 0.05 \text{ km/min}$$

So his average speed is (0.32 ± 0.05) km/min $(\pm 16\%)$.

Propagation Rule # 3: Multiplication by a constant

• If
$$z = kx$$
 then $\delta z = k\delta x$, or $\frac{\delta z}{z} = \frac{\delta x}{x}$

Example: Betty bought 10 bottles of beads online. Each bottle contains 200 ± 2 beads, which is a 1% uncertainty. For 10 bottles, it will be 2000 ± 20 beads, which is also a 1% uncertainty. Multiplying by 10 increases the absolute uncertainty from 2 to 20, but does not change the relative uncertainty.

Use absolute uncertainty:

 $n = 10n_1 = 10 \times 200 = 2000$ $\delta n = 10\delta n_1 = 10 \times 2 = 20$ Use relative uncertainty:

 $n = 10n_1 = 10 \times 200 = 2000$

$$\frac{\delta n}{n} = \frac{\delta n_1}{n_1} = \frac{2}{200} = 0.01$$
$$\delta n = \left(\frac{\delta n}{n}\right) n = 0.01 \times 2000 = 20$$

Both methods get the same result: 10 bottle of beads will have 2000 ± 20 beads.

Propagation Rule # 4: Powers

If
$$z = x^n$$
 then $\frac{\delta z}{z} = |n| \frac{\delta x}{x}$ Don't mix up exponent and constant!

Example: Adam is painting a square wall. Its length and width are both (2.00±0.05) m.

A=a²=(2.00 m)²=4.00 m² $\frac{\delta A}{A} = 2\frac{\delta a}{a} = 2 \times \frac{0.05}{2.00} = 0.05$ $\delta A = \frac{\delta A}{A} \times A = 0.05 \times 4.00 \text{ m}^2 = 0.2 \text{ m}^2$

The area of the wall is $(4.0 \pm 0.2) \text{ m}^2 (\pm 5\%)$.

Apply the rules to many variables

 $z = a + b - c + d \rightarrow \delta z = \delta a + \delta b + \delta c + \delta d$

$$z = \frac{xy}{uvw} \rightarrow \frac{\delta z}{z} = \frac{\delta x}{x} + \frac{\delta y}{y} + \frac{\delta u}{u} + \frac{\delta v}{v} + \frac{\delta w}{w}$$

$$z = \frac{x^3 y}{4\sqrt{v}w} \rightarrow \frac{\delta z}{z} = 3\frac{\delta x}{x} + \frac{\delta y}{y} + \frac{\delta 4}{4} + \frac{1}{2}\frac{\delta v}{v} + \frac{\delta w}{w}$$