Uncertainty Propagation Examples

Example 1: Find δq, where $q=A^{2} B C$. The values and the uncertainties of A, B and C are known positive numbers.

Solution:

$$
q=A^{2} B C=A A B C
$$

Using the "Multiplication and Division" rule, the relative uncertainty in the product is the sum of the relative uncertainties of the constituents:

$$
\frac{\delta q}{q}=\frac{\delta A}{A}+\frac{\delta A}{A}+\frac{\delta B}{B}+\frac{\delta C}{C}=2 \frac{\delta A}{A}+\frac{\delta B}{B}+\frac{\delta C}{C}
$$

To find the absolute uncertainty from the relative uncertainty:

$$
\delta q=q\left(\frac{\delta q}{q}\right)
$$

Substitute in the numbers to find the numerical value of δq.

Example 2: Find δm, where $m=m_{1}+2 m_{2}$. The values and the uncertainties of m_{1} and m_{2} are known.

Solution:

Using the "Addition or Subtraction" rule, we add the absolute uncertainties

$$
\delta m=\delta m_{1}+\delta\left(2 m_{2}\right)
$$

Using the "Multiplication and Division" rule

$$
\frac{\delta\left(2 m_{2}\right)}{2 m_{2}}=\frac{\delta 2}{2}+\frac{\delta m_{2}}{m_{2}}=\frac{\delta m_{2}}{m_{2}} \quad(\text { because } \delta 2=0)
$$

so $\delta\left(2 m_{2}\right)=\frac{\delta m_{2}}{m_{2}}\left(2 m_{2}\right)=2 \delta m_{2}$,
and finally $\delta m=\delta m_{1}+\delta\left(2 m_{2}\right)=\delta m_{1}+2 \delta m_{2}$
Note that we can also get $\delta\left(2 m_{2}\right)=2 \delta m_{2}$ directly by using the "Multiplication by a Constant" rule.

Example 3: The mass of a cylinder is measured to be $m=(112.3 \pm 0.1) \mathrm{g}$. The diameter is measured to be $d=(1.23 \pm 0.01) \mathrm{cm}$ and the length is measured to be $l=(5.77 \pm 0.01) \mathrm{cm}$. What is the density ρ of the cylinder and its uncertainty?

Calculations

Convert unit:
$m=(112.3 \pm 0.1) \times 10^{-3} \mathrm{~kg}, d=(1.23 \pm 0.01) \times 10^{-2} \mathrm{~m}, l=(5.77 \pm 0.01) \times 10^{-2} \mathrm{~m}$.
So the density is:
$\rho=\frac{m}{V}=\frac{m}{\pi r^{2} l}=\frac{4 m}{\pi d^{2} l}=\frac{4\left(112.3 \times 10^{-3} \mathrm{~kg}\right)}{\pi\left(1.23 \times 10^{-2} \mathrm{~m}\right)^{2}\left(5.77 \times 10^{-2} \mathrm{~m}\right)}=16380 \mathrm{~kg} / \mathrm{m}^{3}$

Uncertainty Analysis

$$
\begin{aligned}
\frac{\delta \rho}{\rho} & =\frac{\delta m}{m}+2 \frac{\delta d}{d}+\frac{\delta l}{l} \\
& =\frac{0.1 \mathrm{~g}}{112.3 \mathrm{~g}}+2\left(\frac{0.01 \mathrm{~cm}}{1.23 \mathrm{~cm}}\right)+\frac{0.01 \mathrm{~cm}}{5.77 \mathrm{~cm}} \\
& =0.018884
\end{aligned}
$$

percentage uncertainty: $\frac{\delta \rho}{\rho}=(0.018884)(100 \%)=1.8884 \% \rightarrow 2 \%$
absolute uncertainty: $\delta \rho=\rho\left(\frac{\delta \rho}{\rho}\right)=\left(16380 \mathrm{~kg} / \mathrm{m}^{3}\right)(0.018884)=309.32 \mathrm{~kg} / \mathrm{m}^{3}$

Conclusions

The density of the cylinder, ρ, was found to be $(1.64 \pm 0.03) \times 10^{4} \mathrm{~kg} / \mathrm{m}^{3}(\pm 2 \%)$.
(Note that because the uncertainty $\delta \rho$ is bigger than 10 and we want to keep only 1 sig fig for it, we have to use scientific notation to report the final result.)

